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ABSTRACT: In this study, an analytical method for the detection and identification of extra virgin olive oil adulteration with
four types of oils (corn, peanut, rapeseed, and sunflower oils) was proposed. The variables under evaluation included 22 fatty
acids and 6 other significant parameters (the ratio of linoleic/linolenic acid, oleic/linoleic acid, total saturated fatty acids (SFAs),
polyunsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs), MUFAs/PUFAs). Univariate analyses followed by
multivariate analyses were applied to the adulteration investigation. As a result, the univariate analyses demonstrated that higher
contents of eicosanoic acid, docosanoic acid, tetracosanoic acid, and SFAs were the peculiarities of peanut adulteration and higher
levels of linolenic acid, 11-eicosenoic acid, erucic acid, and nervonic acid the characteristics of rapeseed adulteration. Then, PLS-
LDA made the detection of adulteration effective with a 1% detection limit and 90% prediction ability; a Monte Carlo tree
identified the type of adulteration with 85% prediction ability.
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■ INTRODUCTION

The olive tree is one of the most important crops in
Mediterranean countries. Olive oil has the properties of
preventing cardiovascular disease, neurological disorders, and
breast and colon cancers due to its well-balanced fatty acid
composition and natural antioxidants.1 As olive oil is usually
much more expensive than other edible oils, its adulteration is
generally motivated to maximize profits by replacing olive oil
with cheaper vegetable oils, which may be a serious problem for
regulatory agencies and may threaten the health of consumers.
Detection of olive oil adulteration is a difficult and challenging

analytical problem because olive oil consists of complex mixtures
of triacylglycerols (TAGs), partial glycerides, hydrocarbons,
tocopherols, pigments, sterols, alcohols, triterpene acids, volatile
compounds, phenolic compounds, and phospholipids.2,3 Much
work has been done to detect and quantify other vegetable oils in
olive oil. Spectroscopic methods are commonly used due to their
rapid and nondestructive advantages, such as total synchronous
fluorescence (TSyF) spectra,4 mid-infrared,5 FT-IR,6 NMR,7 and
Raman.2

However, spectroscopy can only give information related to
the whole fingerprinting characteristics, whereas information
regarding its components cannot be obtained. Analytical
methods focused on the component difference between pure
and adulterated olive oil are highly demanded. Those methods
can be divided into two groups: one is based upon the analysis of
a particular compound such as filbertone,8 and the other is to
analyze a specific fraction of the oil sample, such as sterols,9

volatile compounds,10 and fatty acids.11−13 As TAGs, composed
of three esterified fatty acids with an attached glycerol backbone,
are the main component of vegetable oil (∼95%)14 and because
it is the well-balanced fatty acid composition that confers to the
olive oil its high nutritional values, the determination of fatty
acids with GC or GC-MS becomes favorable.

Most studies based on the fatty acid compositions were
focused only on the detection of adulterations without
considering the type of vegetable oil involved. Only Capote et
al.13 investigated different kinds of adulterants (sunflower, corn,
peanut, coconut oils) in olive oil. However, despite its effective
identification, only eight different samples of pure olive oil were
considered, which could not eliminate the variability between
them,15−18 and also peak areas were used to do the quantitative
analysis without the use of an internal standard. More
importantly, it was not investigated which fatty acids the
adulterated samples changed significantly.
In this study, more kinds of pure olive oils and different types

of adulterants were considered to be able to construct a more
effective model. As for the internal standard, heptadecanoic acid
methyl ester is commonly used for this purpose. However,
because olive oil contains heptadecanoic acid (≤0.3%),19 in this
study, tridecanoic acid methyl ester was chosen as the internal
standard . Moreover, SIM mode was applied to get a lower
detection limit and, thus, to improve the sensitivity of the
detector.
The aims of this paper are (1) to detect whether an olive oil

sample is adulterated or not, (2) to identify the type of
adulterants, and (3) to explore the significant parameters that can
distinguish pure olive oil from adulterated olive oils and classify
different types of adulterants using the fatty acid profile by GC-
MS coupled with chemometrics.
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■ MATERIALS AND METHODS
Samples and Chemicals. Fifty nonadulterated olive oil samples

were included. Sixteen of these samples were bought in the Chinese
market, which were imported from Italy (4), Greece (4), and Spain (8);
20 other samples were provided by the University of Algarve, Portugal,
and 14 by the University of Cadiz, Spain. Both Portuguese and Spanish
olive oils were collected from different regions.
Six corn oil samples, 4 sunflower oils, 11 rapeseed oils, and 3 peanut

oils were purchased from local supermarkets. All of the samples were
kept in dark glass bottles and stored at room temperature.
For the investigation of the olive oil adulteration, five different

adulteration levels (1, 5, 10, 20, and 50% (w/w)), were prepared for each
type of adulterant. Both pure olive oils and adulterants used for the
mixing process were randomly selected. These mixtures were analyzed
immediately after preparation.
A 37-component fatty acid methyl esters (FAMEs) mix and methyl

tridecanoate were purchased from Sigma-Aldrich (Shanghai) Trading
Co., Ltd. The solution of 0.4 MNaOH/CH3OHwas freshly prepared in
the laboratory by dissolving a reagent grade NaOH in methanol.
Fatty Acid Methyl Esters Preparation. Fatty acid methyl esters

were prepared by alkaline transmethylation.20 Aliquots (50 μL) of
sample were spiked with internal standard working solution (50 μL
tridecanoic acid methyl ester, 100 g/L). One milliliter of 0.4 MNaOH−
CH3OH was added and reacted for about 5 min in an ultrasonic bath.
After the solution turned clear and transparent, the methyl esters were
extracted with 1 mL of hexane twice and diluted to a final volume of 2
mL.
GC-MS Instrument and Analytical Conditions. All GC-MS

analyses were performed with Shimadzu GC2010A (Kyoto, Japan) gas
chromatography instrument coupled with a GCMS-QP2010 quadru-
pole mass spectrometer (Shimadzu). In the gas chromatographic
system, a DB-23 capillary column, 30 m length, 0.25 mm i.d., and 0.25
μm film, consisting of 50% cyanopropyl 50% dimethyl polysiloxane
(Agilent) was used. Column temperature was programmed from 120 to
160 °C at the rate of 20 °C/min, from 160 to 190 °C at the rate of 6 °C/
min, from 190 to 220 °C at the rate of 20 °C/min, and then held for 6
min at 220 °C. The injection temperature was kept at 250 °C, the carrier
gas was helium, and the column flow was 1.0 mL/min. A sample of 1 μL
was injected with a split ratio of 500:1.
Mass Spectroscopy Conditions. The ion source temperature was

200 °C, and the interface temperature was 250 °C. Ionization voltage
was 70 eV; single-ion monitoring was performed at m/z 55, 67, 74, 79,
and 87.
Multivariate Statistical Analysis. CARS-PLS-LDA and Monte

Carlo tree (MCTree) were used to detect and identify olive oil
adulteration.
CARS-PLS-LDA. Partial least-squares (PLS) is a supervised method,

and one of the most commonly used multivariate analysis methods. It is
primarily concerned with the transformation of a large set of related
variables into a new, smaller set of orthogonal variables, which are called
latent variables.
Linear discriminant analysis (LDA) is a statistical technique that can

be used for the classification of individuals into mutually exclusive and
exhaustive groups, based on a set of independent variables.21 The latent
variables obtained by PLS are usually used as the input data to LDA.
Including too many variables into a model may cause overfitting.22

Therefore, variable selection is always performed before putting the data
into the model. Competitive adaptive reweighted sampling (CARS) is a
variable selection method;23 it selects N subsets of variables by N
sampling runs in an iterative manner and finally chooses the subsets with
the lowest root-mean-square error of CV (RMSECV) value as the
optimal subset.
MCTree. MCTree provides a feasible way to uncover the predictive

structure of data by the establishment of cross-predictive models.24 First,
a number of classification trees with different structures are grown by
means of the Monte Carlo strategy. As each tree is constructed,
classification tree-based sample similarity can be computed to generate a
sample proximity matrix. The sample proximity matrix obtained can give
an intrinsic measure of similarities between samples. Meanwhile,

variable importance ranking allows the discovery of informative
variables. Nonlinear mapping algorithms can be employed to convert
the high-dimensional space into a low-dimensional space. This approach
shares many outstanding advantages; the one we are most attracted to is
that it can effectively cope with multiclass data, which are not easily
solved by other statistical approaches.

■ RESULT AND DISCUSSION
Identification andQuantification of FAMEs.The FAMEs

were identified by retention time and mass spectra comparison
with those of the corresponding standards. Finally, 22 fatty acid
methyl esters were identified.
The ratios of the FAMEs’ areas to that of the internal standard

were calculated for the quantitative analysis. Besides the single
component, total saturated fatty acids (SFAs), polyunsaturated
fatty acids (PUFAs), monounsaturated fatty acids (MUFAs), and
the ratios of oleic/linoleic acid, linoleic/linolenic acid, and
MUFAs/PUFAs were also under evaluation.
To ensure the quality of the olive oils used to obtain the

mixtures, PCA was first applied to olive oils, and the score plot is
shown in Figure 1. Some samples were located far from the

concentrated region, and so discarded for this purpose. Only
samples located inside the ellipse were selected as candidates to
make the mixtures. To further minimize the effect of different
varieties of olive oil in the adulteration, 30 olive oils, which were
obtained from different regions, were finally selected for the
mixing process. Eleven of these samples were bought in the
Chinese market, which were imported from Italy (4), Greece (4),
and Spain (4); 10 other samples were provided by the University
of Algarve, Portugal, and 9 by the University of Cadiz, Spain.
The average total ion current (TIC) chromatograms for the 30

pure olive oils and the average TIC for each type of other
analyzed oils are shown in Figure 2. The fatty acid composition of
the five pure oils is shown in Table 1.
As shown in Figure 2 and Table 1, each of the four cheaper

vegetable oils is different from the olive oil in the fatty acid
profile, and they change the olive oil fatty acid profile in different
ways.

Univariate Analysis. The change trends of each variable for
different adulteration types and at different adulteration levels are
shown in Figure 3, where each subfigure represents a variable and

Figure 1. PCA scores plot of the olive oils.
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each line represents a type of adulteration. Most of the variables
have undergone a change to a different degree.
It was observed that all of the adulterated samples increased

the contents of myristic acid, linoleic acid, and PUFAs and

reduced the levels of 7-hexadecenoic acid, 9-hexadecenoic acid,
10-heptadecenoic acid, and oleic acid as well as the oleic/linoleic
acid ratio, MUFAs, and MUFAs/PUFAs ratio. Besides, peanut−
olive significantly raised the contents of eicosanoic acid,

Figure 2.Average chromatograms (TICs) of each kind of pure oil (A, olive oil; B, corn oil; C, peanut oil; D, sunflower oil; E, rapeseed oil). Peaks: 1, 12:0;
2, 14:0; 3, 15:0; 4, 16:0; 5, 16:1n-9c; 6, 16:1n-7c; 7, 17:0; 8, 17:1n-7c; 9, 18:0; 10, 18:1n-9c; 11, 18:1n-7c; 12, 18:2n-6c; 13, 18:3n-6c; 14, 18:3n-3c; 15,
20:0; 16, 20:1n-9c; 17, 21:0; 18, 22:0; 19, 22:1n-9c; 20, 23:0; 21, 24:0; 22, 24:1n-9c; IS, internal standard.
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docosanoic acid, tetracosanoic acid, and SFAs, whereas rape-
seed−olive elevated the contents of linolenic acid, γ-linolenic
acid, 11-eicosenoic acid, erucic acid, and nervonic acid. It is worth
noting that corn−olive, peanut−olive, and sunflower−olive had a
higher ratio of linoleic/linolenic acid than pure olive oil, whereas
rapeseed−olive slightly lowered this ratio.
The oleic/linoleic acid ratio is frequently used as a stability

parameter, and the oils with higher ratio are also those with a
higher oxidative stability.1,25 As for the adulterated oils, a
decrease in the oxidative stability was observed. Moreover,
linoleic (18:2n-6c) and linolenic (18:3n-3c) acids are the starting
points to manufacture other n-6 and n-3 fatty acids.26,27 They are
involved in similar metabolic systems for the synthesis of their
active metabolites, in which linolenic acid (n-3) has a higher
affinity for those enzyme systems. Any alteration in the
concentration of n-3 fatty acids will have an effect on the
metabolism of n-6 fatty acids. The daily recommendation intake
for the n-6/n-3 ratio is between 4/1 and 10/1.26 This ratio in
pure olive oil was around 8, whereas the adulterated oils mostly
increased this ratio significantly, except for the rapeseed−olive.
As for PUFAs, their high consumption induces a decrease in
HDL cholesterol, along with the known effects on the
oxidizability of LDL,26,28,29 so they should not exceed the
recommended 7% of calories. Conversely, MUFAs may increase
HDL cholesterol, and its high amounts confer to the olive oil a
high nutritional value.30 Therefore, the higher levels of PUFAs
and the lower levels of MUFAs in the adulterated oils are not a
good sign.
Furthermore, the higher content of erucic acid was character-

istic of rapeseed−olive. However, erucic acid has been identified

as an antinutritional compound and has been proscribed since
previous studies found an association between erucic acid
consumption and cardiac lipidosis in rats.31−34

Multivariate Analysis.The application of univariate analysis
is useful for the study of olive oil adulteration; it can help us to
clearly know the components’ variations in adulterated olive oils,
but it alone is not enough. It is difficult to define a quality index to
detect an adulteration, because the frauds could find a way to
make this signal index acceptable, whereas a lower overall
nutritional value would still occur in the product. Therefore, the
multivariate analysis is necessary.

Detection of the Adulteration. Autoscaling was used to
preprocess the data before multivariate statistical analysis.
Adulterated samples were first grouped according to the type

of vegetable oil used in the adulteration. PCA was performed
separately for each adulterated group with nonadulterated olive
oil samples and indicated that the adulterated samples were
different from the pure olive oil (figure not shown). To more
clearly visualize the discrimination of adulterated samples from
pure olive oil samples, the CARS-PLS-LDA model was
constructed.
For each model, one-fifth of the samples (six from pure olive

oil and one from each adulteration level) were randomly selected
as test set, and the remaining samples were combined to get the
training set to construct the models.
Variable selection was first carried out in the training set. The

variables selected for constructing models were palmitic acid,
stearic acid, oleic acid, and the ratios of oleic/linoleic acid and
MUFAs/PUFAs for corn−olive; stearic acid, oleic acid, 11-
octadecenoic acid, eicosanoic acid, docosanoic acid, and

Table 1. Summary of the Relative Levels of Different Fatty Acids in the Five Pure Vegetable Oilsa

component name olive corn peanut sunflower rapeseed

12:0 dodecanoic acid 0.0005 ± 0.0001 0.0007 ± 0.0001 0.0007 ± 0.0001 0.0008 ± 0.0003 0.0015 ± 0.0003
14:0 myristic acid 0.0013 ± 0.0002 0.0043 ± 0.0001 0.0051 ± 0.0021 0.0072 ± 0.0009 0.0072 ± 0.0035
15:0 pentadecanoic acid 0.0006 ± 0.0002 0.0012 ± 0.0001 0.0013 ± 0.0003 0.0017 ± 0.0001 0.0023 ± 0.0003
16:0 palmitic acid 1.2046 ± 0.1374 1.5218 ± 0.1085 1.3437 ± 0.0275 0.6897 ± 0.0322 0.6278 ± 0.3395
16:1n-9c 7-hexadecenoic acid 0.0062 ± 0.0010 0.0031 ± 0.0011 0.0027 ± 0.0005 0.0010 ± 0.0004 0.0019 ± 0.0003
16:1n-7c 9-hexadecenoic acid 0.0363 ± 0.0118 0.0048 ± 0.0005 0.0038 ± 0.0007 0.0034 ± 0.0006 0.0091 ± 0.0014
17:0 heptadecanoic acid 0.0092 ± 0.0036 0.0075 ± 0.0005 0.0092 ± 0.0014 0.0047 ± 0.0005 0.0053 ± 0.0016
17:1n-7c 10-heptadecenoic acid 0.0070 ± 0.0028 0.0016 ± 0.0001 0.0019 ± 0.0005 0.0012 ± 0.0002 0.0025 ± 0.0005
18:0 stearic acid 0.3239 ± 0.0569 0.2051 ± 0.0075 0.4409 ± 0.0922 0.5253 ± 0.0931 0.2400 ± 0.0601
18:1n-9c oleic acid 4.0339 ± 0.2082 1.6202 ± 0.1084 2.0994 ± 0.4530 1.2163 ± 0.0601 2.7017 ± 0.5855
18:1n-7c 11-octadecenoic acid 0.1395 ± 0.0214 0.0364 ± 0.0013 0.0461 ± 0.0221 0.0319 ± 0.0046 0.1489 ± 0.0316
18:2n-6c linoleic acid 0.2909 ± 0.0570 2.7993 ± 0.1359 2.1244 ± 0.4255 3.3801 ± 0.3064 1.1978 ± 0.5347
18:3n-6c γ-linolenic acid 0.0000 ± 0.0000 0.0077 ± 0.0048 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0421 ± 0.0245
18:3n-3c linolenic acid 0.0364 ± 0.0034 0.0394 ± 0.0051 0.1000 ± 0.1536 0.0085 ± 0.0036 0.4055 ± 0.0845
20:0 eicosanoic acid 0.0410 ± 0.0048 0.0449 ± 0.0034 0.1357 ± 0.0498 0.0325 ± 0.0041 0.0621 ± 0.0077
20:1n-9c 11-eicosenoic acid 0.0122 ± 0.0015 0.0132 ± 0.0005 0.0356 ± 0.0120 0.0425 ± 0.0006 0.1168 ± 0.0600
21:0 heneicosanoic acid 0.0014 ± 0.0002 0.0008 ± 0.0002 0.0023 ± 0.0005 0.0008 ± 0.0001 0.0015 ± 0.0005
22:0 docosanoic acid 0.0107 ± 0.0022 0.0132 ± 0.0021 0.2143 ± 0.0966 0.0756 ± 0.0083 0.0347 ± 0.0054
22:1n-9c erucic acid 0.0000 ± 0.0000 0.0009 ± 0.0008 0.0052 ± 0.0013 0.0000 ± 0.0000 0.2361 ± 0.2119
23:0 tricosanoic acid 0.0017 ± 0.0003 0.0013 ± 0.0002 0.0035 ± 0.0005 0.0025 ± 0.0002 0.0023 ± 0.0008
24:0 tetracosanoic acid 0.0040 ± 0.0008 0.0141 ± 0.0017 0.0879 ± 0.0403 0.0187 ± 0.0011 0.0143 ± 0.0010
24:1n-9c nervonic acid 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0097 ± 0.0053
18:2n-6c/18:3n-3c 8.0104 ± 1.4671 72.2838 ± 12.2890 138.8884 ± 142.8961 473.6135 ± 262.1779 3.3338 ± 2.6452
18:1n-9c/18:2n-6c 14.4615 ± 3.2772 0.5790 ± 0.0320 1.0372 ± 0.3737 0.3628 ± 0.0446 2.5586 ± 0.8394
SFAs saturated fatty acids 1.5989 ± 0.1299 1.8148 ± 0.1150 2.2445 ± 0.1718 1.3593 ± 0.0929 0.9989 ± 0.4003
PUFAs polyunsaturated fatty acids 0.3273 ± 0.0586 2.8464 ± 0.1325 2.2245 ± 0.5791 3.3887 ± 0.3050 1.6454 ± 0.4981
MUFAs monounsaturated fatty acids 4.2350 ± 0.2115 1.6801 ± 0.1095 2.1947 ± 0.4437 1.2614 ± 0.0657 3.2267 ± 0.5978
MUFAs/PUFAs 13.4006 ± 2.7742 0.5905 ± 0.0327 1.0563 ± 0.4080 0.3752 ± 0.0463 2.1210 ± 0.6000

aThe results indicate the ratios of the FAMEs’ areas to that of the internal standard, and the data are presented as the mean ± SD.
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Figure 3. continued
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tetracosanoic acid for peanut−olive; 7-hexadecenoic acid, 9-
hexadecenoic acid, oleic acid, erucic acid, and MUFAs for

rapeseed−olive; and 9-hexadecenoic acid, heptadecanoic acid,
oleic acid, 11-octadecenoic acid, MUFAs, and the ratios of oleic/

Figure 3. Relative intensity of different variables at different adulteration level: (blue) corn−olive; (green) peanut−olive; (yellow) rapeseed−olive;
(red) sunflower−olive. 0% represents pure olive oil, and 100% represents pure adulterant.
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linoleic acid and MUFAs/PUFAs for sunflower−olive with pure
olive, respectively.
The selection results are in good accordance with the

univariate analysis previously performed, which demonstrates
that eicosanoic acid, docosanoic acid, and tetracosanoic acid are
the particularities of peanut−olive and that erucic acid is a
particularity of rapeseed−olive. As for other variables selected by
CARS, their particularities are not notable, but it is the synergy
effect among the variables that makes the adulterated oils
separate from pure olive oil.

In these models constructed by the selected variables, a good
separation can be seen between pure olive oil with each kind of
adulteration. Moreover, each grouping of sample pointed in
adulterated olive oil class model represents different adulteration
percentages in ascending order from right to left. The PLS-LDA
scores plots of these models are shown in Figure 4, and the
classification results are summarized in Table 2. Then, the test
sets were used to validate these models, and the prediction results
are also shown in Table 2, which indicate quite a successful
discrimination and high prediction ability of the models.

Figure 4. PLS-LDA scores plots of (a) corn−olive (red), (b) peanut−olive (red), (c) rapeseed−olive (red), and (d) sunflower−olive (red) versus
nonadulterated olive oil samples (blue). 1, 5, 10, 20, and 50 represent 1, 5, 10, 20, and 50% adulteration levels, respectively.

Table 2. Classfication of Different Groups by PLS-LDA Method

group vs pure olive oil recognition ratea (%) prediction rateb (%) sensitivityc specificityd

corn−olive 97.73 (43/44) 100.00 (11/11) 1.000 0.9500
peanut−olive 97.73 (43/44) 90.91 (10/11) 0.9583 1.0000
rapeseed−olive 97.73 (43/44) 90.91 (10/11) 0.9583 1.000
sunflower−olive 100.00 (44/44) 100.00 (11/11) 1.0000 1.000
1% adulterated olive (sunflower−olive as the test set) 95.00 (38/40) 90.00 (9/10) 0.9200 1.0000
1% adulterated olive (rapeseed−olive as the test set) 90.00 (36/40) 80.00 (8/10) 0.8400 1.0000
1% adulterated olive (peanut−olive as the test set) 100.00 (40/40) 100.00 (10/10) 1.000 1.0000
1% adulterated olive (corn−olive as the test set) 100.00 (40/40) 90.00 (9/10) 1.000 1.0000

aRecognition rate is the correct classification of the training set. bPrediction rate is the rate of the correct classification of the predicting set.
cSensitivity is the number of true positives classified as positive. dSpecificity is the number of true negative classified as negative.
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Figure 5. PCA (a) and PLS-LDA (b) scores plots of 1% adulterated olive oils versus nonadulterated olive oil samples (blue, nonadulterated; red, 1%
adulterated olive oil samples).

Figure 6. (a) Sample proximity plot of the oils’ data: A, pure olive oil; B, corn−olive; C, peanut−olive; D, rapeseed−olive; E, sunflower−olive. (b)
Nonlinear mapping plot of the oils data. (c) Variable importance measure obtained by the MCTree.
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Next, to determine if this model is able to discriminate an olive
oil adulterated with an unknown adulterant from pure olive oils,
the 1% adulterated oils, regardless of the type of adulterant, were
grouped as one adulterant class and subjected to statistical
analysis. The union set of the selected variables for each kind of
adulteration above (palmitic acid, 7-hexadecenoic acid, 9-
hexadecenoic acid, heptadecanoic acid, stearic acid, oleic acid,
11-octadecenoic acid, eicosanoic acid, docosanoic acid, erucic
acid, tetracosanoic acid, the ratio of oleic/linoleic acid, MUFAs,
and the ratio of MUFAs/PUFAs) was used to construct the
model.
Modeling adulterated oil samples together means more

variable chemical information, making them more difficult to
be placed in the same group. According to the PCA scores plots
(Figure 5a), the pure olive oil tended to cluster to the right,
whereas the adulterated samples tended to move to the left.
However, some samples were plotted in the region where they
cannot be classified as pure or adulterated, and so PLS-LDA was
applied (Figure 5b). In this model, 3 types of adulteration
samples and 25 pure olive oils were treated as the training set to
construct the model; the remaining samples were the test set. In
such a case, the adulteration type in the test set was independent
from the three adulteration types in the training set. Four
different test sets were selected, and the results are also shown in
Table 2, which demonstrated a very good separation between the
1% adulterant oils and the pure olive oils.
To sum up, PLS-LDA was able to identify the adulterations in

olive oil regardless of the type of adulterant, and even when this
adulterant was unknown. The selected variables proved to be
important for olive oil quality control.
Identification of Adulterants. The PLS-LDA model

enabled us to detect whether a sample was adulterated or not,
but it cannot provide reliable information about what type of
vegetable oil has been used as adulterant. Thus, the next step was
to identify the adulterants using the MCTree.24

The parameters of MCTree were manually set to ntree = 500,
R = 0.5. Figure 6a shows the sample proximity plot of the oils’
data. Clearly, the corn−olive denoted B and the rapeseed−olive
denoted D were significantly different from the other three
groups. Among the other three groups denoted A, C and E, there
exists some overlapping to some extent. To directly and
conveniently observe the classification of the data, the nonlinear
mapping plot (Figure. 6b) was plotted to directly visualize the
data in low-dimensional space. The results of Figure 6a coupled
with Figure 6b sufficiently indicated that the type of adulterants
was possible to identify using the fatty acid profile by MCTree.
To demonstrate the predictivity of this model, the training and

validation sets (4/5 and 1/5) were therefore divided into five
groups: one for pure olive oil and one for each type of
adulteration (corn−olive, peanut−olive, rapeseed−olive, and
sunflower−olive). Thus, the training samples were used to
establish the MCTree model and the validation samples to
evaluate the model. Pure olive oil, rapeseed−olive, and
sunflower−olive oil were all accurately predicted. For corn−
olive and peanut−olive groups, the numbers of misclassification
samples were 2 and 1, respectively. Finally, the total prediction
rate for the five patterns was 88.46% (23/26).
The variable importance calculated by theMCTree is shown in

Figure 6c, from which one can see that there are six fatty acids
(dodecanoic acid, γ-linolenic acid, eicosanoic acid, docosanoic
acid, erucic acid, tetracosanoic acid) that can be very predictive
for the oils’ data. γ-Linolenic acid and erucic acid are the
peculiarities of rapeseed−olive, and eicosanoic acid, docosanoic

acid, and tetracosanoic acid are the ones of peanut−olive. The
change tendency of dodecanoic acid was also different among
different adulteration types.
The ratios of oleic/linoleic acid, linoleic/linolenic acid, and

MUFAs/PUFAs and PUFAs were not important for this model,
which seems to conflict with variable selection results using
CARS. As all of the adulterated oils, regardless of adulteration
type, significantly changed the four variables in the same
direction, this may mean that the four variables can discriminate
pure olive oil from adulterated oils but cannot distinguish the
type of adulterant, making them trivial in this point.
All in all, an analytical method using the fatty acid profile to

make the detection and identification of extra virgin olive oil
adulteration was proposed in this paper. This enabled us to (1)
detect whether an olive oil sample was adulterated or not, (2)
identify the type of adulterant, and (3) select significant variables
to distinguish pure olive oil from adulterated olive oils and to
classify different types of adulterants. As a result, it was found that
each kind of adulteration had its particularities and changed the
content of different fatty acids, whereas they also had some
common characteristics, such as that all of them changed
significantly the nutritional ratio. The models constructed were
able to overcome the variabilities among pure olive oils and
permitted the detection of adulteration and the identification of
the type of adulterant with prediction abilities above 90 and 85%,
respectively, with a detection limit of 1%.
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(7) Šmejkalova,́ D.; Piccolo, A. High-power gradient diffusion NMR
spectroscopy for the rapid assessment of extra-virgin olive oil
adulteration. Food Chem. 2010, 118, 153−158.
(8) Flores, G. F.; Castillo, M. L. R.; Herraiz, M. Study of the
adulteration of olive oil with hazelnut oil by on-line coupled high
performance liquid chromatographic and gas chromatographic analysis
of filbertone. Food Chem. 2006, 97, 742−749.
(9) Ismail, K. M. A.; Alsaed, A. K.; Ahmad, R. Detection of olive oil
adulteration with some plant oils by GLC analysis of sterols using polar
column. Food Chem. 2010, 121, 1255−1259.
(10) Szkudlarz, S. M.; Jelen ́, H. H. The potential of different techniques
for volatile compounds analysis coupled with PCA for detection of the
adulteration of olive oil with hazelnut oil. Food Chem. 2008, 110, 751−
761.
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